

Energy Efficiency NOW
Conference 2016



#### Agenda

- Warm-up
- Building Automation System Fundamentals
- Protocols and Standards
- Energy Savings Strategies
- Measurement and Verification
- Building Analytics
- Open Discussion



#### **Safety**

#### Electric Hazards

- Electric Shocks received by
  - Defective Power Tool
  - Defective Extension Cord
  - •From overloading a switch or over-riding a by-pass.
  - By not grounding electrical equipment.
  - By coming in close contact with live electric lines.
  - By coming too close to high power lines with the power arching over and making contact.



#### **Safety**

#### Electric Hazards

- Ways to avoid electric hazards
  - Always inspect tools and equipment for frayed cords and defective plugs before using them.
  - Never use a power tool that has had the ground plug removed; inspect the plug.
  - Never stand in water and operate a power tool without proper (i.e., insulated) footwear.
  - Keep extension cords out of water when in use.
  - Consider all power lines "live" and avoid contact with them.
  - Follow the company assured grounding/electrical protection program.
  - Disconnect all electrical tools and cords when not in use.
  - Be sure all temporary lighting is equipped with bulb covers.
  - Make sure all power supplies, circuit boxes and breaker boxes are properly marked to indicate their purpose.
  - Use Ground Fault Interrupters (GFI's) on all jobsites. Defective Power
     Tool



#### Who is LONG?

#### LONG Building Technologies

- Celebrating our 50<sup>th</sup> Year
- Business Lines
  - Building Automation and Controls (Space Wizards)
  - Energy Services and Analytics
  - Industrial / PLC
  - Mechanical Services
  - Security (Access Control / CCTV)
- Safety Culture
- 380 Employees







#### Culture



LONG Building Technologies delivers expert solutions – integrating HVAC, building comfort, parts and security for building owners, managers and tenants. We provide the peace of mind that only comes from knowing LONG expertise and technologies are keeping their buildings comfortable, productive, safe and energy efficient. We deliver confidence and ROI from their investment in optimal building performance and inside working spaces.

Long live your building!



#### **Building Control Systems**

- Pneumatic and electric control systems being replaced by Direct Digital Control (DDC) Systems
- Past systems operated in similar manner to pneumatic or electric systems
  - Electronic time clock with setpoint and schedule capabilities
- Manufacturer's proprietary protocol



#### **Current and Future Trends**

- Standardization of communication protocols
- Smart technologies applied to all types of end devices for little or no additional cost
- Traditional controls companies changing becoming system integrators



#### **Changing Roles**

- Open platforms have changed the relationships between building owners, controls manufacturers and controls providers
- System Integrators
  - Allow multiple manufacturers and products to work together
  - Owners can select products, applications and installers based on "Best of" and competitively bid for the best solutions



#### **Communication Protocols**

- Proprietary protocols a thing of the past
- Industry Standard Protocols
  - BACNet ASHRAE Standard
  - LON Industry standard for interoperable devices
  - Modbus Industrial and Packaged Equipment
- Going Forward
  - XML, HTML, oBIX
    - Standard XML and Web Services to exchange information between building systems and IT infrastructure

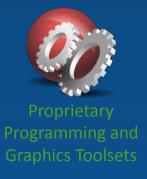


#### **Communication Protocols**

### Standard Communication Protocols Allow for

- Integration
- Interoperability
- Connectivity between building systems
  - HVAC Packaged Systems
  - Lighting
  - Access and Surveillance
  - Energy Monitoring




#### Legacy / Proprietary / Closed

















**Primary Network Leve** 

















Secondary or Field Network Level

#### **Problems:**

- Single Sourced
- Proprietary Protocols
- Proprietary Toolsets
- Proprietary Software
- Limited Integration
- •End Result... "Locked In"



#### A Truly Open Building Automation System











Freeware Toolsets











Network








Niagara /Bacnet IP Network Level













Open Field Network Level



## TRIDIUM Niagara Framework

- Quickly becoming the operating system of the Internet of Things.
- Many controls manufacturers utilizing
- Connects and translates data from nearly any device or system—managing and optimizing performance from buildings to factories to cities and beyond.
- A truly open platform, Niagara has grown an extensive community of people, machines and companies with thousands of applications and endless possibilities.



#### **Smart Technologies**

- Trend to Internet Protocol 6 (IPV6)
  - Allows smart devices to have unique address
- Ability for devices to collect data
  - Allows for measurement and verification
  - Analytics Automatic detection of improper operation of systems
    - Finding early reduces cost energy and operational cost impacts



# Basic Energy Savings Strategies (What can I take home from this conference today)

- Retro-commissioning
- Sequence of Operations
- Fresh Air Requirements
- Scheduling
- Unoccupied Control Options
- Setpoint Reset
- Maintenance Procedures
- Energy Efficient Equipment and Controls



- Retro-commissioning
  - A review of all mechanical and electrical systems in a facility
    - Verify systems are operating per original specifications
      - Sequence of Operations
      - Schedules
      - Balancing
      - Loop Tuning



- Sequence of Operations
  - Real Life
    - Sequences written prior to mid '90's more than likely not taking advantage of smart technology
    - Building use has changed
    - No written sequences exist





- Sequence of Operations
  - Mixed air control
  - One of biggest areas for excessive energy use
    - Maintain constant 55 deg F.
      - Ensures minimum air during heating
      - Requires reheat
    - Dampers stuck open (or closed)
    - Improper sequencing during cooling mode





- Mixed Air Control Revise to:
  - Maintain minimum outside air during heating and when no call for cooling
  - Dampers to open to maintain 55 deg F on a call for cooling for free cooling
  - Dampers position back to minimum position when air conditioning called for



- Mixed Air Control Minimum Fresh Air:
  - ASHRAE Standard 62.1 specifies minimum fresh air requirements
  - ASHRAE Standard 90.1 specifies minimum requirements for energy efficient design of buildings
    - Smart technology provides methods to meet requirements and reduce energy consumption
      - Maintain minimum outside air during heating or no call for cooling
      - Utilize air flow measuring for minimum requirements
      - Base minimum air flow on actual occupant load of building
      - Base on CO2 level Mixed Air Control



#### Scheduling

- #1 Ensure building systems are scheduled based on building use
  - Occupancy based on individual zone versus entire mechanical system
  - Override to occupancy mode by individual zone
- If a system is being left on 24 hours per day during winter to protect one area that may be subject to freezing
- FIX THAT AREA.



- Unoccupied Mode Control
  - Older sequences position the heating coil valve to 100% heating during unoccupied mode.
    - Causes excessive energy use to protect coil
    - Heat soaks the ductwork
      - When fan starts, has to dissipate heat
  - Solution
    - Use mixed air sensor to control heating coil valve when fan is off to maintain 45 deg F in the mixed air plenum



- Outside Air Reset Control
  - Lower the heating water supply temperature
    - As OSA temp rises, HWS set point is lowered

- Automatic setpoint calculations for air handling unit supply air temperature
  - Base on outside air temperature
    - Further base on cooling or heating load of all zones in building



- Routine Maintenance
  - Filters
    - Ensure proper and efficient airflow
  - Lubrication
    - Extend equipment life
  - Review system operation
    - Schedules
    - History Logs
    - Alarm Events
  - Visual inspection
    - There are some things that a machine just can't do…..



- Replace inefficient equipment
  - Boilers
  - Chillers
  - Air Conditioning
  - Controls



#### **Facility Management Needs**

- Reduce utility consumption.
  - Do more with less resources (\$ and labor).
  - Nip consumption "errors" before the next utility bill arrives.
  - Easy way to make sense of data quickly
  - No occupant impact.





- Tools to monitor energy savings
  - Spreadsheets enter utility costs each month
  - Utilities some offer reports comparing prior periods
  - Web Tools Allows analytics of energy use and costs
  - Real time monitoring



- Energy Dashboards
  - Display complex information into easy to understand visual format
  - Update energy performance in real time
  - Detect problems
- Public Display
  - Touch screen monitor
    - Allows public interaction to view energy performance in the facility
- Drive behavioral change



- Hawthorne Effect
  - Premise that people will change their behavior if they know they are being observed and measured
    - Study done at the Hawthorne Plant for GE from 1927 to 1938
      - Attempt to determine if change in lighting level affected worker productivity
      - Concluded productivity improved whether lighting level was increased or decreased
    - Concluded that people changed behavior and increased productivity because they knew they were being measured



## **Energy Dashboard Benefits**

- Identify energy consumption anomalies quickly = \$\$
- Comparative functionality to see trends
- Simple information analysis to optimize asset performance
- Easily deployed in a cost-effective manner
- Educational component to support LEED and occupant engagement
- Open protocol integration allowing interface to all DDC systems
- Automates Asset Performance Management



#### **Features & Attributes**

- Customer Configurable
- Branded Customer Information
- Unique Background Image
- Weather Information is Displayed from an Internet RSS Feed.
- Available as Touch Screen or Display
- Energy Usage Comparison Tool
- Educational Information



## **Building Energy / Utilities**

#### Scalable for Single Building or Campus

- Electrical Usage and Demand
- Water, Oil and Gas Usage
- Daily, Weekly and Annual Data
- Charts for Time Periods
- Utility Period Comparisons
- CO<sub>2</sub> Consumption and Comparisons
- Monetize Utility Consumption
- Easily Expanded to add meters



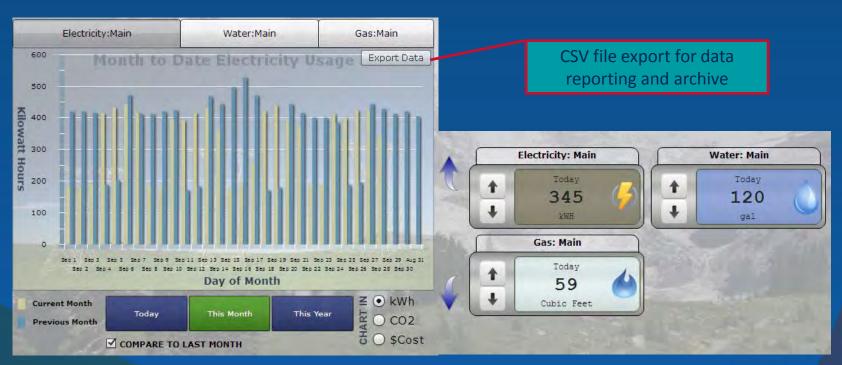
#### **Features & Attributes**

- Utility Meters: Electric, Gas, Oil, Solar and Water
- Building Energy/Utilities
- About Energy Usage Education
- -Energy Tip Scroller
- -Energy Usage Comparison
- About Us Information



#### **Educational Use**

#### •An Energy Tip Scroller is Displayed to Inform People on How to Conserve.


- Reducing lighting levels in office areas and hallways by increasing use of existing task lights.
- Be sure to turn off your computer and other office equipment, such as printers and copiers, to conserve energy and reduce internal heat gain.
- To save power during periods of inactivity during the normal working day, be sure that energy saving features are enabled in equipment such as your office copier



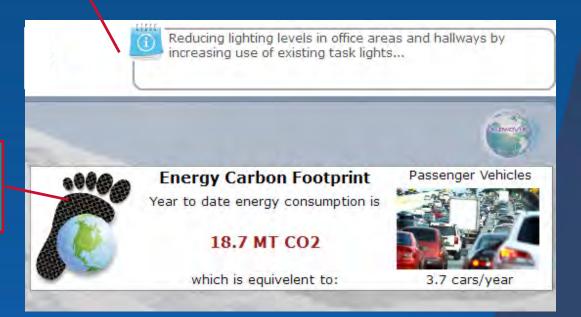
## **Real Time Consumption & Comparison**

- Electrical Usage and Demand
- Water, Oil and Gas Usage
- Daily, Weekly and Annual Data
- Charts for Time Periods

- Utility Period Comparisons
- Carbon Consumption and Comparisons
- Monetize Utility Consumption





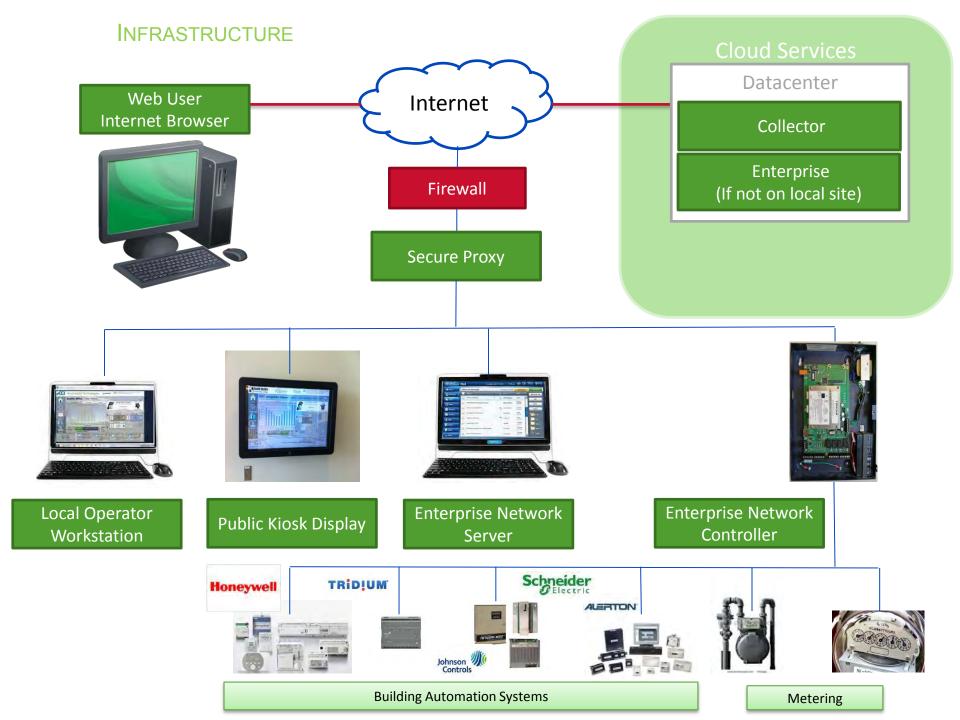

## **Energy Tips and Impact**

### **Dozens of scrolling Energy Tips .....**

Be sure to turn off your computer and other office equipment, such as printers and copiers, to conserve energy and reduce internal heat gain.

To save power during periods of inactivity during the normal working day, be sure that energy saving features are enabled in equipment such as your office copier

**Easily recognizable measurement** in million tons carbon footprint



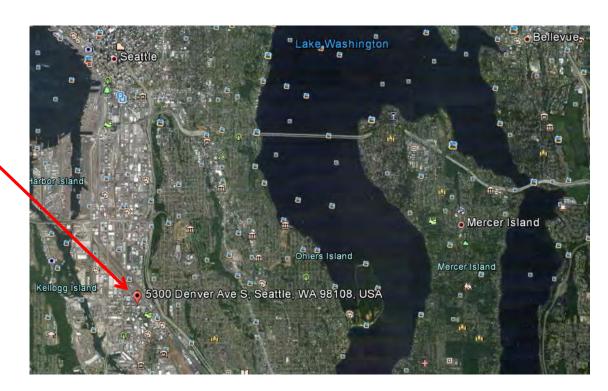



# **Technology**

- Build with IT Standards
  - \* XML, Flash, .Net
    - Controls Agnostic
      - Does not matter what manufacturer system or which communication protocol being used
    - View on public monitor or via Internet Web page






# **Educational Energy Dashboard**





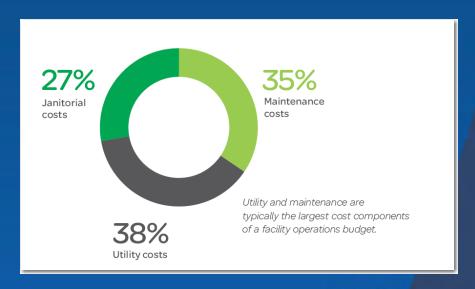
# **Live Demonstration**

- Live demo of our LONG
   Seattle Office
- 1 meter each: Electricity, Gas, Water



# **Building Analytics**

## With Building Analytics, building owners and operators can....


Identify, prioritize and act on cost savings opportunities

## With Analytics -

- Take advantage of your building data
- Find hidden costs and inefficiencies
- Optimize operational performance
- Reduce energy expenditures
- Create more environmentally friendly, high-performance buildings

#### **Utility and maintenance ...**

Typically the largest cost components of a facility operations budget





# What do Building Owners and Managers Want?

#### They are looking for....

- Monitoring based, continuous or ongoing commissioning
- Automated fault detection and diagnostics
- LEED credits
- Performance based utility incentives
- Better service and insight how service resources should be
- Delivering energy and cost savings

#### Or they want to...

- Have more confidence where spending money for our operations
- Have answers so can make fact-based decisions when investing in improvements
- Know improvements are highest priority that will produce measureable results
- Make real impact to energy, operational efficiency, comfort and the financial well
  being of our buildings





# **Building Analytics defined**

## A SMART managed service...

providing actionable intelligence and expert guidance with clear prioritized asset optimization recommendations that are based on statistical analysis, performance trending, and automated diagnostics with results that improve the energy, comfort and financial well being of buildings.





# Supplements existing BMS

# Building Automation System

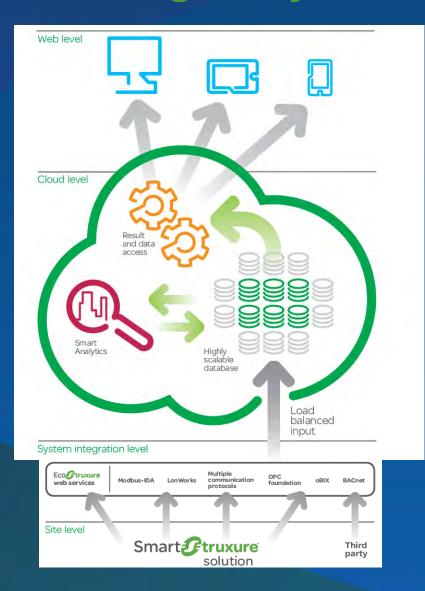
integrates building systems
performs control tasks as designed
reacts to current state conditions
provides notification of nonconformance
or exceeding threshold settings

Ideal for Operations & Maintenance to maintain day-to-day building operations

# Building Analytics Managed Service

- analyzes trend performance energy, maintenance & comfort information over a given period - day, month, year
- automatically quantifies and identifies persistent performance issues in the building(s) or site
- top issue validation made by experienced building engineer along with recommendations to remedy

Ideal for engineering planning to pinpoint top energy, maintenance, and comfort priorities that can maximize O&M resources and budget




# **Building Analytics FAQ:**

| Question                               | Answers:                                                                                                                                                                                                                                             |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How does it help me with planning?     | Automated system based diagnostics that identifies faults, inefficiencies, and system degradation with recommendations for improvement                                                                                                               |
| Will it work with my existing systems? | Yes! Cross-platform data integration consolidates information from multiple BAS, buildings and clients                                                                                                                                               |
| Is this just extended trending?        | NO! This is a systemic monitoring approach where the diagnostics are evaluating systems and then the data is converted into coherent analytics with equipment and system faults including opportunities to improve control sequences and operations. |
| How often do I receive feedback?       | System continuously monitors and can alert if immediate concern.  Typically, Monthly or Quarterly for trend analysis with periodic report providing prioritized list of efficiency opportunities sorted by energy, cost and comfort impact.          |
| How can I ensure equipment operation?  | By continuously monitoring system performance over time and identifying equipment issues provides for more proactive operation                                                                                                                       |
| Can I use system for LEED?             | Yes! Measurement and verification supports LEED & incentives.                                                                                                                                                                                        |



## **Building Analytics: Architecture**



#### **Example of findings...**

- Simultaneous heating and cooling
- •Suboptimal economizer controls
- Opportunity for higher/lower loop setpoints
- Opportunity for static pressure reset
- •Leaking valves, broken dampers
- Manual overrides
- Poor occupancy scheduling
- •Excessive zone temperature setpoints
- Excess reheating
- •Trends in chiller efficiency
- Short cycling
- •Custom analytics




# **Building Analytics: Reporting**



Avoidable costs for period AND analyst commentary on building operating issues

Prioritize energy, maintenance, and comfort issues with recommended actions



Trend analysis over time to track performance plus validate repairs



# **Custom Reporting**

## **Know the WHY and its impact:**

Report Period – frequency of analysis review and reporting is selectable service - weekly, monthly, semi-annual, end of year

**Expert Opinion** – experienced engineer analysis, opinion & recommendation

**Trend Summary** – over reporting period – avoidable energy, number and trend of comfort, energy & maintenance incidents



For the period of: October 20, 2012– January 20, 2013

Avoidable Energy Cost

\$33,265 Total This Period

\$5,201 Decrease Since Last Period

- Much of the avoidable cost decrease may be attributed to fixing the cooling coil leak on A-HU 1 (October 10, 2012). It is possible the actual savings are greater, since we are in heating season this quarter, and the building is not calling for much cooling (making a potential leak more detrimental).
- The current most costly equipment faults are possible leaking cooling valves on AHU 11, 6, 5, and 4.
   These issues are being flagged because the supply air temperature is as much as 25°F lower than the mixed air temperature while the cooling coil is off. On AHU 4 and 5, this is also creating comfort issues, since the supply air temp is too low.
- There are quite a few CAV boxes that have different chronic control probeins. CANA\_2 has a temperature setpoint of nearly 80°F. The room temperature is over 70°F and struggling to increase. The reheat valve is constantly open, probably indicating excessive reheat, and the supply air flow is higher than setpoint. Alternately, CAV3\_5 and CAV2\_26 are serving an overheated space with closed reheat valves, and wide open dampers. However, air flow is lower than setpoint. There are other CAV with problems, but these are the most severe and frequent.
- AHU 10 and 11 are struggling to meet static pressure setpoint. This is causing the fan VFDs to remain at 100% continuously, it may be worth checking the air flow balance of the affected AHU/CAV systems.



Location:
Mytown, FL 00000

Year Built:
2008

Total square footage:
170,800 sq. ft.

Prepared By:

Joe Partner – Partner Co.
555 Main St, Anytown, MA 00000
(555) 555-5555
Joe®partnero.com

Facility At A Glance

Anon Customer

Make the most of your energy<sup>™</sup>



Anon Hospital



## **Custom Reporting**

## **Know the WHY and its impact:**

**Top 5 Issues** – report will include highest priority issues for energy, maintenance& comfort

Action Items – lists any repairs, changes and next step items open for discussion that can lead to issue resolution

#### Quarterly Building Analytic Report

Anon Customer



#### Top 5 Issues

| Energy        |            |                                                                              |          |
|---------------|------------|------------------------------------------------------------------------------|----------|
| Building      | Equipment  | Notes                                                                        | Cost/Qtr |
| Anon Hospital | AHU_6_CAVs | Low Damper Position – opportunity for static pressure reset.                 | \$11,120 |
| Anon Hospital | AHU_11     | No supply temp reset. Cooling valve issues.                                  | \$7,778  |
| Anon Hospital | AHU_6      | No supply temp reset. Cooling valve issues.                                  | \$6,163  |
| Anon Hospital | AHU_5      | Supply temp lower than setpoint. No supply temp reset. Cooling valve issues. | \$5,029  |
| Anon Hospital | AHU_4      | Supply temp lower than setpoint. No supply temp reset. Cooling valve issues. | \$4,318  |

| Maintenance   |           |                                                                                            |                     |
|---------------|-----------|--------------------------------------------------------------------------------------------|---------------------|
| Building      | Equipment | Notes                                                                                      | Severity<br>Priorty |
| Anon Hospital | AHU_11    | Static pressure lower than setpoint. Supply fan speed constant. Return fan speed constant. | 6                   |
| Anon Hospital | AHU_10    | Static pressure lower than setpoint. Supply fan speed constant.                            | 6                   |
| Anon Hospital | CAV8_2    | Room temp lower than setpoint. Stuck reheat valve.                                         | 4                   |
| Anon Hospital | CAV5_82   | Supply flow lower than setpoint. Stuck reheat valve May be sensor error.                   | 4                   |
| Anon Hospital | CAV3_11   | Sensor error: Stuck reheat valve.                                                          | 4                   |

| Building      | Equipment | Notes                                                                          | Severity<br>Priorty |
|---------------|-----------|--------------------------------------------------------------------------------|---------------------|
| Anon Hospital | CAV1_16   | Sensor error. Room temp higher than setpoint. Supply flow lower than setpoint. | 10                  |
| Anon Hospital | CAV3_5    | Room temp higher than setpoint. Supply flow lower than setpoint.               | 10                  |
| Anon Hospital | CAV4_45   | Room temp lower than setpoint. Supply flow higher than setpoint.               | 10                  |
| Anon Hospital | CAV2_26   | Sensor error. Room temp higher than setpoint. Supply flow lower than setpoint, | 10                  |
| Anon Hospital | CAV11_22  | Room temp higher than setpoint. Supply flow lower than setpoint.               | 10                  |

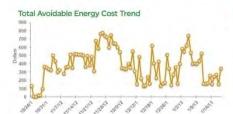
#### Recommended Actions

- The AHU 6 static pressure is being driven by one zone you could get over \$11,000 savings by lowering it
- Review temperature performance and air flow balance of CAV units with high comfort priorities
- Check AHU 4, 5, 6, and 11 for leaking cooling valves
- Check flat-lined temperature sensor in zone served by CAV1\_16
- Explore why AHU 10 and 11 have such low static pressure
- Check CAV8\_2 and CAV3\_11 for stuck reheat valve valve fully open, but temperature can't reach setpoint



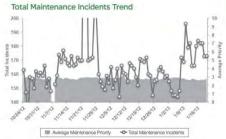
# **Custom Reporting**

## **Know the WHY and its impact:**


Performance Trend – impact regarding persistent equipment issues and avoidable energy costs impact over analysis period

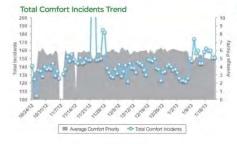
Commentary – performance trends reinforce recommendations and validate service repairs and impacting positive change

#### Quarterly Building Analytic Report


Anon Customer






#### **Energy Cost Trend Analysis**

- The avoidable cost per daily analysis is fluctuating a great deal, probably due largely to weather patterns.
- The biggest cost issues seem to be leaking cooling valves, and this is definitely a problem that would fluctuate with the weather.



#### Maintenance Trend Analysis

- This graph shows some chronic issues which have not been addressed.
- The low maintenance priority indicates that these issues are either on non-central systems, or that they are generally not severe (or both).



#### Comfort Trend Analysis

- This graph shows some chronic issues which have not been addressed.
- Many of the CAV units and AHU have comfort issues, although the severity is variable.





# Report Findings: Energy Savings



#### **Expert Opinion:**

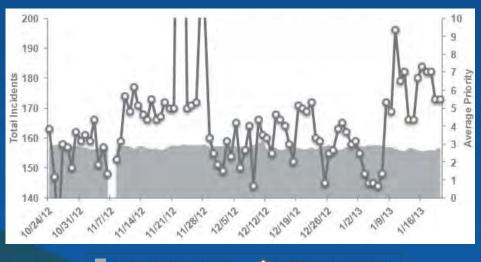
Much of the avoidable cost decrease may be attributed to fixing the cooling coil leak on AHU 1 (October 10, 2012). It is possible the actual savings are greater, since we are in heating season this quarter, and the building is not calling for much cooling (making a potential leak more detrimental).

The current most costly equipment faults are possible leaking cooling valves on AHU 11, 6, 5, and 4. These issues are being flagged because the supply air temperature is as much as 25°F lower than the mixed air temperature while



## **Energy Cost Trend Analysis**

- The avoidable cost per daily analysis is fluctuating a great deal, probably due largely to weather patterns.
- The biggest cost issues seem to be leaking cooling valves, and this is definitely a problem that would fluctuate with the weather.




# Report Findings: Maintenance Efficiency

### **Maintenance Trend Analysis**

- This graph shows some chronic issues which have not been addressed.
- The low maintenance priority indicates that these issues are either on non-central systems, or that they are generally not severe (or both).

#### Total Maintenance Incidents Trend



#### **Recommended actions:**

The AHU 6 static pressure is being driven by one zone – you could get over \$11,000 savings by lowering it.



# Report Findings: Comfort Improvement

### **Comfort Trend Analysis**

- This graph shows some chronic issues which have not been addressed.
- Many of the CAV units and AHU have comfort issues, although the severity is variable.



#### **Recommended actions:**

Review temperature performance and air flow balance of CAV units with high comfort priorities.

AHU 4 and 5 are creating comfort issues since the supply air temp is too low.



# **Demonstration**





# **Questions?**



Brian Miller
Vice President
LONG Building Technologies
5660 B Street
Anchorage, Alaska 99518
(907) 561-3044
bmiller@long.com

